2024
2023
Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN Domain.
Small, G.I., Fedorova, O., Olinares, P.D.B., Chandanani, J., Banerjee, A., Choi, Y.J., Molina, H., Chait, B.T., Darst, S.A. and Campbell, E.A., 2023. Mol. Cell. 2023 October 26; 83(21):3921-3930. doi: https://doi.org/10.1016/j.molcel.2023.10.001
Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA*, Campbell EA*, Landick R*.Mol Cell. 2023 May 4;83(9):1474-1488.e8. doi: 10.1016/j.molcel.2023.04.007. Epub 2023 Apr 27.
Structural basis for substrate selection by the SARS-CoV-2 replicase.
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA*, Darst SA*. Nature. 2023 Feb;614(7949):781-787. doi: 10.1038/s41586-022-05664-3. Epub 2023 Feb 1.
An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. Proc Natl Acad Sci USA. 2023 Feb 21; 120(8): e2215945120. doi: 10.1073/pnas.2215945120.
A general mechanism for transcription bubble nucleation in bacteria. Mueller AU*, Chen J*, Wu M, Chiu C, Nixon BT, Campbell EA, Darst SA. Proc Natl Acad Sci USA. 2023 Mar 27; 120(14): e2220874120. doi: 10.1073/pnas.2220874120.
A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance, Grimes S, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers A, Agostini M, Abu-Shmais A, Darst SA, Campbell EA, Denison M. mBio, in press.
Small, G.I., Fedorova, O., Olinares, P.D.B., Chandanani, J., Banerjee, A., Choi, Y.J., Molina, H., Chait, B.T., Darst, S.A. and Campbell, E.A., 2023. Mol. Cell. 2023 October 26; 83(21):3921-3930. doi: https://doi.org/10.1016/j.molcel.2023.10.001
Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA*, Campbell EA*, Landick R*.Mol Cell. 2023 May 4;83(9):1474-1488.e8. doi: 10.1016/j.molcel.2023.04.007. Epub 2023 Apr 27.
Structural basis for substrate selection by the SARS-CoV-2 replicase.
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA*, Darst SA*. Nature. 2023 Feb;614(7949):781-787. doi: 10.1038/s41586-022-05664-3. Epub 2023 Feb 1.
An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. Proc Natl Acad Sci USA. 2023 Feb 21; 120(8): e2215945120. doi: 10.1073/pnas.2215945120.
A general mechanism for transcription bubble nucleation in bacteria. Mueller AU*, Chen J*, Wu M, Chiu C, Nixon BT, Campbell EA, Darst SA. Proc Natl Acad Sci USA. 2023 Mar 27; 120(14): e2220874120. doi: 10.1073/pnas.2220874120.
A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance, Grimes S, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers A, Agostini M, Abu-Shmais A, Darst SA, Campbell EA, Denison M. mBio, in press.
2022
Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol. 2022 Mar;29(3):250-260. doi: 10.1038/s41594-022-00734-6.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol. 2022 Mar;29(3):250-260. doi: 10.1038/s41594-022-00734-6.
2021
Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals.
Piscotta FJ, Hoffmann HH, Choi YJ, Small GI, Ashbrook AW, Koirala B, Campbell EA, Darst SA, Rice CM, Brady SF. mSphere. 2021 Dec 1;6(6):e0071121. doi: 10.1128/mSphere.00711-21.
Structural origins of Escherichia coli RNA polymerase open promoter complex stability.
Saecker RM, Chen J, Chiu CE, Malone B, Sotiris J, Ebrahim M, Yen LY, Eng ET, Darst SA. PNAS. 2021 Oct 5;118(40):e2112877118. doi: 10.1073/pnas.2112877118.
CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis.
Malone B, Campbell EA, Darst SA. Enzymes. 2021;49:1-37. doi: 10.1016/bs.enz.2021.06.004. 2021 Aug 23.
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Lilic M, Darst SA, Campbell EA. Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.
Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. PNAS. 2021 May 11;118(19):e2102516118. doi: 10.1073/pnas.2102516118.
Structural basis for transcription complex disruption by the Mfd translocase.
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife. 2021 Jan 22;10:e62117. doi: 10.7554/eLife.62117.
Piscotta FJ, Hoffmann HH, Choi YJ, Small GI, Ashbrook AW, Koirala B, Campbell EA, Darst SA, Rice CM, Brady SF. mSphere. 2021 Dec 1;6(6):e0071121. doi: 10.1128/mSphere.00711-21.
Structural origins of Escherichia coli RNA polymerase open promoter complex stability.
Saecker RM, Chen J, Chiu CE, Malone B, Sotiris J, Ebrahim M, Yen LY, Eng ET, Darst SA. PNAS. 2021 Oct 5;118(40):e2112877118. doi: 10.1073/pnas.2112877118.
CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis.
Malone B, Campbell EA, Darst SA. Enzymes. 2021;49:1-37. doi: 10.1016/bs.enz.2021.06.004. 2021 Aug 23.
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Lilic M, Darst SA, Campbell EA. Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.
Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. PNAS. 2021 May 11;118(19):e2102516118. doi: 10.1073/pnas.2102516118.
Structural basis for transcription complex disruption by the Mfd translocase.
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife. 2021 Jan 22;10:e62117. doi: 10.7554/eLife.62117.
2020
Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM.
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Structure. 2021 Feb 4;29(2):186-195.e6. doi: 10.1016/j.str.2020.11.001. Epub 2020 Nov 19.
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.
Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
Time-resolved cryo-EM using Spotiton.
Dandey VP, Budell WC, Wei H, Bobe D, Maruthi K, Kopylov M, Eng ET, Kahn PA, Hinshaw JE, Kundu N, Nimigean CM, Fan C, Sukomon N, Darst SA, Saecker RM, Chen J, Malone B, Potter CS, Carragher B. Nat Methods. 2020 Sep;17(9):897-900. doi: 10.1038/s41592-020-0925-6. Epub 2020 Aug 10.
Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Cell. 2020 Sep 17;182(6):1560-1573.e13. doi: 10.1016/j.cell.2020.07.033. Epub 2020 Jul 28.
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
Discovery of Ubonodin, an Antimicrobial Lasso Peptide Active against Members of the Burkholderia cepacia Complex.
Cheung-Lee WL, Parry ME, Zong C, Cartagena AJ, Darst SA, Connell ND, Russo R, Link AJ. Chembiochem. 2020 May 4;21(9):1335-1340. doi: 10.1002/cbic.201900707. Epub 2020 Jan 3.
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Structure. 2021 Feb 4;29(2):186-195.e6. doi: 10.1016/j.str.2020.11.001. Epub 2020 Nov 19.
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.
Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
Time-resolved cryo-EM using Spotiton.
Dandey VP, Budell WC, Wei H, Bobe D, Maruthi K, Kopylov M, Eng ET, Kahn PA, Hinshaw JE, Kundu N, Nimigean CM, Fan C, Sukomon N, Darst SA, Saecker RM, Chen J, Malone B, Potter CS, Carragher B. Nat Methods. 2020 Sep;17(9):897-900. doi: 10.1038/s41592-020-0925-6. Epub 2020 Aug 10.
Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Cell. 2020 Sep 17;182(6):1560-1573.e13. doi: 10.1016/j.cell.2020.07.033. Epub 2020 Jul 28.
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
Discovery of Ubonodin, an Antimicrobial Lasso Peptide Active against Members of the Burkholderia cepacia Complex.
Cheung-Lee WL, Parry ME, Zong C, Cartagena AJ, Darst SA, Connell ND, Russo R, Link AJ. Chembiochem. 2020 May 4;21(9):1335-1340. doi: 10.1002/cbic.201900707. Epub 2020 Jan 3.
2019
E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife. 2019 Dec 16;8:e49375. doi: 10.7554/eLife.49375.
Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.
Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA.Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
Mechanisms of Transcriptional Pausing in Bacteria.
Kang JY, Mishanina TV, Landick R, Darst SA. J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13.
Discovery and structure of the antimicrobial lasso peptide citrocin.
Cheung-Lee WL, Parry ME, Jaramillo Cartagena A, Darst SA, Link AJ. J Biol Chem. 2019 Apr 26;294(17):6822-6830. doi: 10.1074/jbc.RA118.006494. Epub 2019 Mar 7.
Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO.
Chen J, Noble AJ, Kang JY, Darst SA. J Struct Biol X. 2019 Jan-Mar;1:100005. doi: 10.1016/j.yjsbx.2019.100005. Epub 2019 Feb 14.
Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin.
Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1273-1278. doi: 10.1073/pnas.1817352116. Epub 2019 Jan 9.
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife. 2019 Dec 16;8:e49375. doi: 10.7554/eLife.49375.
Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.
Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA.Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
Mechanisms of Transcriptional Pausing in Bacteria.
Kang JY, Mishanina TV, Landick R, Darst SA. J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13.
Discovery and structure of the antimicrobial lasso peptide citrocin.
Cheung-Lee WL, Parry ME, Jaramillo Cartagena A, Darst SA, Link AJ. J Biol Chem. 2019 Apr 26;294(17):6822-6830. doi: 10.1074/jbc.RA118.006494. Epub 2019 Mar 7.
Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO.
Chen J, Noble AJ, Kang JY, Darst SA. J Struct Biol X. 2019 Jan-Mar;1:100005. doi: 10.1016/j.yjsbx.2019.100005. Epub 2019 Feb 14.
Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin.
Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1273-1278. doi: 10.1073/pnas.1817352116. Epub 2019 Jan 9.
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.
2018
Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism.
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Nat Commun. 2018 Oct 8;9(1):4147. doi: 10.1038/s41467-018-06587-2.
Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Cell. 2018 Jun 14;173(7):1650-1662.e14. doi: 10.1016/j.cell.2018.05.017. Epub 2018 Jun 7.
RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell. 2018 Mar 1;69(5):802-815.e5. doi: 10.1016/j.molcel.2018.01.018.
Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Elife. 2018 Feb 26;7:e34823. doi: 10.7554/eLife.34823.
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Nat Commun. 2018 Oct 8;9(1):4147. doi: 10.1038/s41467-018-06587-2.
Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Cell. 2018 Jun 14;173(7):1650-1662.e14. doi: 10.1016/j.cell.2018.05.017. Epub 2018 Jun 7.
RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell. 2018 Mar 1;69(5):802-815.e5. doi: 10.1016/j.molcel.2018.01.018.
Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Elife. 2018 Feb 26;7:e34823. doi: 10.7554/eLife.34823.
2017
6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.
Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures.
Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.
RNA polymerase motions during promoter melting.
Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. Science. 2017 May 26;356(6340):863-866. doi: 10.1126/science.aam7858
Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.
Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478.
Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.
Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence.
Garner AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA, Campbell EA, Nickels BE, Galburt EA, Stallings CL. J Bacteriol. 2017 Jan 30;199(4):e00698-16. doi: 10.1128/JB.00698-16. Print 2017 Feb 15.
Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Elife. 2017 Jan 9;6:e22520. doi: 10.7554/eLife.22520.
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.
Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures.
Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.
RNA polymerase motions during promoter melting.
Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. Science. 2017 May 26;356(6340):863-866. doi: 10.1126/science.aam7858
Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.
Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478.
Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.
Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence.
Garner AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA, Campbell EA, Nickels BE, Galburt EA, Stallings CL. J Bacteriol. 2017 Jan 30;199(4):e00698-16. doi: 10.1128/JB.00698-16. Print 2017 Feb 15.
Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Elife. 2017 Jan 9;6:e22520. doi: 10.7554/eLife.22520.
For publications dated before 2017, please browse for more articles on PubMed!