2024
Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Eckhart, K.A., Delbeau, M., Munsamy-Govender, V., DeJesus, M.A., Azadian, Z.A., Reddy., A.K., Chandanani, J., Poulton, N.C., Quiñones-Garcia, S., Bosch, B., Landick, R., Campbell, E.A.**, Rock, J.M.**. Nature. (2024). doi: 10.1038/s41586-024-07206-5.
Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome. .
Ju, X., Li, S., Froom, R., Wang, L., Lilic, M., Delbeau, M., Campbell, E.A., Rock, J.M., and Liu, S. Nature. (2024). doi: 10.1038/s41586-024-07105-9
Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome. .
Ju, X., Li, S., Froom, R., Wang, L., Lilic, M., Delbeau, M., Campbell, E.A., Rock, J.M., and Liu, S. Nature. (2024). doi: 10.1038/s41586-024-07105-9
2023
Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN Domain.
Small, G.I., Fedorova, O., Olinares, P.D.B., Chandanani, J., Banerjee, A., Choi, Y.J., Molina, H., Chait, B.T., Darst, S.A. and Campbell, E.A., 2023. Mol. Cell. 2023 October 26; 83(21):3921-3930. doi: https://doi.org/10.1016/j.molcel.2023.10.001
Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA*, Campbell EA*, Landick R*.Mol Cell. 2023 May 4;83(9):1474-1488.e8. doi: 10.1016/j.molcel.2023.04.007. Epub 2023 Apr 27.
Phase Variation as a Major Mechanism of Adaptation in Mycobacterium Tuberculosis Complex.
Vargas, Roger, Michael J. Luna, Luca Freschi, Maximillian Marin, Ruby Froom, Kenan C. Murphy, Elizabeth A. Campbell, Thomas R. Ioerger, Christopher M. Sassetti, and Maha Reda Farhat. Proceedings of the National Academy of Sciences 120, no. 28 (July 11, 2023): e2301394120. https://doi.org/10.1073/pnas.2301394120.
Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB.
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ*, Campbell EA*. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220785120. doi: 10.1073/pnas.2220785120. Epub 2023 Mar 8.
Structural basis for substrate selection by the SARS-CoV-2 replicase.
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA*, Darst SA*. Nature. 2023 Feb;614(7949):781-787. doi: 10.1038/s41586-022-05664-3. Epub 2023 Feb 1.
A general mechanism for transcription bubble nucleation in bacteria.
Mueller AU*, Chen J*, Wu M, Chiu C, Nixon BT, Campbell EA, Darst SA. Proc Natl Acad Sci USA. 2023 Mar 27; 120(14): e2220874120. doi: 10.1073/pnas.2220874120.
A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance.
Grimes S, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers A, Agostini M, Abu-Shmais A, Darst SA, Campbell EA, Denison M. mBio, in press.
Small, G.I., Fedorova, O., Olinares, P.D.B., Chandanani, J., Banerjee, A., Choi, Y.J., Molina, H., Chait, B.T., Darst, S.A. and Campbell, E.A., 2023. Mol. Cell. 2023 October 26; 83(21):3921-3930. doi: https://doi.org/10.1016/j.molcel.2023.10.001
Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA*, Campbell EA*, Landick R*.Mol Cell. 2023 May 4;83(9):1474-1488.e8. doi: 10.1016/j.molcel.2023.04.007. Epub 2023 Apr 27.
Phase Variation as a Major Mechanism of Adaptation in Mycobacterium Tuberculosis Complex.
Vargas, Roger, Michael J. Luna, Luca Freschi, Maximillian Marin, Ruby Froom, Kenan C. Murphy, Elizabeth A. Campbell, Thomas R. Ioerger, Christopher M. Sassetti, and Maha Reda Farhat. Proceedings of the National Academy of Sciences 120, no. 28 (July 11, 2023): e2301394120. https://doi.org/10.1073/pnas.2301394120.
Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB.
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ*, Campbell EA*. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220785120. doi: 10.1073/pnas.2220785120. Epub 2023 Mar 8.
Structural basis for substrate selection by the SARS-CoV-2 replicase.
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA*, Darst SA*. Nature. 2023 Feb;614(7949):781-787. doi: 10.1038/s41586-022-05664-3. Epub 2023 Feb 1.
A general mechanism for transcription bubble nucleation in bacteria.
Mueller AU*, Chen J*, Wu M, Chiu C, Nixon BT, Campbell EA, Darst SA. Proc Natl Acad Sci USA. 2023 Mar 27; 120(14): e2220874120. doi: 10.1073/pnas.2220874120.
A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance.
Grimes S, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers A, Agostini M, Abu-Shmais A, Darst SA, Campbell EA, Denison M. mBio, in press.
2022
The essential M. tuberculosis Clp protease is functionally asymmetric in vivo.
d'Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. Sci Adv. 2022 May 6. doi: 10.1126/sciadv.abn7943.
Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile.
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Nature. 2022 Apr 6. doi: 10.1038/s41586-022-04545-z.
Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol. 2022 Mar;29(3):250-260. doi: 10.1038/s41594-022-00734-6.
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.
Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25. Review. PubMed PMID: 34824452; PubMed Central PMCID: PMC8613731.
d'Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. Sci Adv. 2022 May 6. doi: 10.1126/sciadv.abn7943.
Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile.
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Nature. 2022 Apr 6. doi: 10.1038/s41586-022-04545-z.
Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex.
Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol. 2022 Mar;29(3):250-260. doi: 10.1038/s41594-022-00734-6.
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.
Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25. Review. PubMed PMID: 34824452; PubMed Central PMCID: PMC8613731.
2021
Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals.
Piscotta FJ, Hoffmann HH, Choi YJ, Small GI, Ashbrook AW, Koirala B, Campbell EA, Darst SA, Rice CM, Brady SF. mSphere. 2021 Dec 1;6(6):e0071121. doi: 10.1128/mSphere.00711-21.
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.
Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25.
An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15.
Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem. 2021 Oct;297(4):101218. doi: 10.1016/j.jbc.2021.101218. Epub 2021 Sep 23.
Molnupiravir: coding for catastrophe.
Malone B, Campbell EA. Nat Struct Mol Biol. 2021 Sep;28(9):706-708. doi: 10.1038/s41594-021-00657-8.
CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis.
Malone B, Campbell EA, Darst SA. Enzymes. 2021;49:1-37. doi: 10.1016/bs.enz.2021.06.004. 2021 Aug 23.
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Lilic M, Darst SA, Campbell EA. Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit.
Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI.J Infect Dis. 2021 Jul 15;224(Supplement_1):S1-S21. doi: 10.1093/infdis/jiab305.
The anti-sigma factor MucA is required for viability in Pseudomonas aeruginosa.
Schofield MC, Rodriguez DQ, Kidman AA, Cassin EK, Michaels LA, Campbell EA, Jorth PA, Tseng BS.Mol Microbiol. 2021 Aug;116(2):550-563. doi: 10.1111/mmi.14732. Epub 2021 May 18.
Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.
Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. PNAS. 2021 May 11;118(19):e2102516118. doi: 10.1073/pnas.2102516118.
Structural basis for transcription complex disruption by the Mfd translocase.
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife. 2021 Jan 22;10:e62117. doi: 10.7554/eLife.62117.
Piscotta FJ, Hoffmann HH, Choi YJ, Small GI, Ashbrook AW, Koirala B, Campbell EA, Darst SA, Rice CM, Brady SF. mSphere. 2021 Dec 1;6(6):e0071121. doi: 10.1128/mSphere.00711-21.
Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.
Malone B, Urakova N, Snijder EJ, Campbell EA. Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25.
An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15.
Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem. 2021 Oct;297(4):101218. doi: 10.1016/j.jbc.2021.101218. Epub 2021 Sep 23.
Molnupiravir: coding for catastrophe.
Malone B, Campbell EA. Nat Struct Mol Biol. 2021 Sep;28(9):706-708. doi: 10.1038/s41594-021-00657-8.
CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis.
Malone B, Campbell EA, Darst SA. Enzymes. 2021;49:1-37. doi: 10.1016/bs.enz.2021.06.004. 2021 Aug 23.
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Lilic M, Darst SA, Campbell EA. Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit.
Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI.J Infect Dis. 2021 Jul 15;224(Supplement_1):S1-S21. doi: 10.1093/infdis/jiab305.
The anti-sigma factor MucA is required for viability in Pseudomonas aeruginosa.
Schofield MC, Rodriguez DQ, Kidman AA, Cassin EK, Michaels LA, Campbell EA, Jorth PA, Tseng BS.Mol Microbiol. 2021 Aug;116(2):550-563. doi: 10.1111/mmi.14732. Epub 2021 May 18.
Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.
Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. PNAS. 2021 May 11;118(19):e2102516118. doi: 10.1073/pnas.2102516118.
Structural basis for transcription complex disruption by the Mfd translocase.
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife. 2021 Jan 22;10:e62117. doi: 10.7554/eLife.62117.
2020
Rewiring the specificity of extracytoplasmic function sigma factors.
Todor H, Osadnik H, Campbell EA, Myers KS, Li H, Donohue TJ, Gross CA. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33496-33506. doi: 10.1073/pnas.2020204117. Epub 2020 Dec 14.
Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM.
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Structure. 2021 Feb 4;29(2):186-195.e6. doi: 10.1016/j.str.2020.11.001. Epub 2020 Nov 19.
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.
Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
Diverse and unified mechanisms of transcription initiation in bacteria.
Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol. 2021 Feb;19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.
Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Cell. 2020 Sep 17;182(6):1560-1573.e13. doi: 10.1016/j.cell.2020.07.033. Epub 2020 Jul 28.
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
Todor H, Osadnik H, Campbell EA, Myers KS, Li H, Donohue TJ, Gross CA. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33496-33506. doi: 10.1073/pnas.2020204117. Epub 2020 Dec 14.
Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM.
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Structure. 2021 Feb 4;29(2):186-195.e6. doi: 10.1016/j.str.2020.11.001. Epub 2020 Nov 19.
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase.
Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
Diverse and unified mechanisms of transcription initiation in bacteria.
Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol. 2021 Feb;19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.
Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Cell. 2020 Sep 17;182(6):1560-1573.e13. doi: 10.1016/j.cell.2020.07.033. Epub 2020 Jul 28.
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
2019
Transcription initiation in mycobacteria: a biophysical perspective.
Boyaci H, Saecker RM, Campbell EA.Transcription. 2020 Apr;11(2):53-65. doi: 10.1080/21541264.2019.1707612. Epub 2019 Dec 27.
E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife. 2019 Dec 16;8:e49375. doi: 10.7554/eLife.49375.
Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.
Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA.Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin.
Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1273-1278. doi: 10.1073/pnas.1817352116. Epub 2019 Jan 9.
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.
Boyaci H, Saecker RM, Campbell EA.Transcription. 2020 Apr;11(2):53-65. doi: 10.1080/21541264.2019.1707612. Epub 2019 Dec 27.
E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife. 2019 Dec 16;8:e49375. doi: 10.7554/eLife.49375.
Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.
Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA.Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin.
Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1273-1278. doi: 10.1073/pnas.1817352116. Epub 2019 Jan 9.
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Nature. 2019 Jan;565(7739):382-385. doi: 10.1038/s41586-018-0840-5. Epub 2019 Jan 9.
2018
Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism.
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Nat Commun. 2018 Oct 8;9(1):4147. doi: 10.1038/s41467-018-06587-2.
Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Elife. 2018 Feb 26;7:e34823. doi: 10.7554/eLife.34823.
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Nat Commun. 2018 Oct 8;9(1):4147. doi: 10.1038/s41467-018-06587-2.
Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts.
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Elife. 2018 Feb 26;7:e34823. doi: 10.7554/eLife.34823.
2017
6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.
Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures.
Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.
Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.
Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478.
Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.
Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence.
Garner AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA, Campbell EA, Nickels BE, Galburt EA, Stallings CL. J Bacteriol. 2017 Jan 30;199(4):e00698-16. doi: 10.1128/JB.00698-16. Print 2017 Feb 15.
Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Elife. 2017 Jan 9;6:e22520. doi: 10.7554/eLife.22520.
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.
Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures.
Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.
Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.
Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478.
Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.
Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence.
Garner AL, Rammohan J, Huynh JP, Onder LM, Chen J, Bae B, Jensen D, Weiss LA, Manzano AR, Darst SA, Campbell EA, Nickels BE, Galburt EA, Stallings CL. J Bacteriol. 2017 Jan 30;199(4):e00698-16. doi: 10.1128/JB.00698-16. Print 2017 Feb 15.
Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Elife. 2017 Jan 9;6:e22520. doi: 10.7554/eLife.22520.
For publications dated before 2017, please browse for more articles on PubMed!