CAMPBELL LAB AND DARST LAB
  • Home
  • Research
  • Publications
    • The Darst Lab
    • The Campbell Lab
  • Members
    • The Darst Lab
    • The Campbell Lab
    • Lab Alumni
    • Lab pets
  • The Campbell Lab
    • Join Us
    • Handbook
  • The Darst Lab
  • Outreach

E. coli RNA Polymerase

Picture
RNA in all cellular organisms is synthesized by a complex molecular machine, the DNA-dependent RNAP. In its simplest bacterial form, the enzyme comprises four subunits with a total molecular mass of ~400 kDa. We focus on highly characterized prokaryotic RNAPs, which share basic structure and catalytic function with more complex archaeal and eukaryotic enzymes but are controlled by a much simpler set of regulatory factors (1).

​The basic elements of the transcription cycle, initiation, elongation, and termination, were elucidated through study of prokaryotes. The RNAP catalytic core, along with initiation factors (σ factors in bacteria, which combine with core to generate holoenzyme (2)), locates promoter sequences within the duplex DNA, forms the open promoter complex (RPo) by unwinding the DNA surrounding the transcription start site, initiates synthesis of an RNA chain, elongates the RNA processively in an elongation complex (EC) while translocating itself and the transcription bubble along the DNA template, and finally releases itself and the completed transcript from the DNA when termination signals are encountered.
The transcription cycle is marked by a series of stable RNAP complexes (core (3) → holo(4) →RPo (5) → EC (6) , all structures determined by the Darst lab using X-ray crystallography or cryo-electron microscopy) that interconvert through transient intermediates involving large conformational changes in the nucleic acids, the RNAP, or both. At every stage of the transcription cycle, RNAP function is modulated by interactions with hundreds of extrinsic regulatory factors (7) . Moreover, bacteriophage have evolved extrinsic factors that use ingenious mechanisms to subvert the host transcription process for their own purposes (8).

A detailed structural and functional understanding of the entire transcription cycle is essential to explain the fundamental control of gene expression and to target RNAP with small-molecule antibiotics (9). Moreover, a complete understanding of how a complex, molecular machine uses binding and chemical energy to effect conformational changes that drive the cycle, and how regulators modulate the cycle, is of fundamental interest. We continue to use a combination of X-ray crystallography, cryo-electron microscopy, and other biophysical and biochemical approaches to fill the gaps in our understanding of the bacterial transcription cycle, particularly large regulatory complexes and unstable transition states between the stable states of the cycle.

Related Publications

(1) Diverse and unified mechanisms of transcription initiation in bacteria.
Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol. 2021 Feb; 19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.​
​
(2.1) Crystal Structure of a σ70 Subunit Fragment from E. Coli RNA Polymerase.
Malhotra A, Severinova E, Darst SA. Cell. 1996 Oct; 87(1):127-136. doi:10.1016/S0092-8674(00)81329-X 

(2.2) Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit.
Campbell, EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA. Cell. 2004 July; 9(3):527-539. doi:10.1016/S1097-2765(02)00470-7

(2.3)  Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA.
Campbell EA, Tupy JL, Gruber TM, Wang S, Sharp MM, Gross CA, Darst SA. Mol Cell. 2003 Apr;11(4):1067-78. doi: 10.1016/s1097-2765(03)00148-5.

(2.4)  Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation.
Sorenson MK, Ray SS, Darst SA. Mol Cell. 2004 Apr 9;14(1):127-38. doi: 10.1016/s1097-2765(04)00150-9.

(2.5)  Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme.
Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1805-E1814. doi: 10.1073/pnas.1619464114. Epub 2017 Feb 21.

(2.6) Bacterial sigma factors: a historical, structural, and genomic perspective.
Feklístov A, Sharon BD, Darst SA, Gross CA.Annu Rev Microbiol. 2014;68:357-76. doi: 10.1146/annurev-micro-092412-155737. Epub 2014 Jun 18.

(3)  Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution.
Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Cell. 1999 Sep 17;98(6):811-24. doi: 10.1016/s0092-8674(00)81515-9.

(4.1) Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.
Murakami KS, Masuda S, Darst SA. Science. 2002 May 17;296(5571):1280-4. doi: 10.1126/science.1069594.

(4.2) 
Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1.
Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19772-7. doi: 10.1073/pnas.1314576110. Epub 2013 Nov 11.

(4.3) See 2.5

(4.4) 
E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.
Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife. 2019 Dec 16;8:e49375. doi: 10.7554/eLife.49375.

(5.1)  Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.
Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA. Science. 2002 May 17;296(5571):1285-90. doi: 10.1126/science.1069595.

(5.2) Structural basis for promoter-10 element recognition by the bacterial RNApolymerase sigma subunit.
Feklistov A, Darst SA. Cell. 2011 Dec 9;147(6):1257-69. doi: 10.1016/j.cell.2011.10.041. Epub 2011 Dec 1.

(5.3) Structure of a bacterial RNA polymerase holoenzyme open promotercomplex.
Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. Elife. 2015 Sep 8;4:e08504. doi: 10.7554/eLife.08504.

(5.4) See 4.4

(5.5) Structural basis for transcription activation by Crl through tethering of σS and RNA polymerase.
Cartagena AJ, Banta AB, Sathyan N, Ross W, Gourse RL, Campbell EA, Darst SA. Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.

(5.6) Stepwise Promoter Melting by Bacterial RNA Polymerase.
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.

(5.7)  Structural origins of Escherichia coli RNA polymerase open promoter complex stability.
Saecker RM, Chen J, Chiu CE, Malone B, Sotiris J, Ebrahim M, Yen LY, Eng ET, Darst SA. Proc Natl Acad Sci U S A. 2021 Oct 5;118(40):e2112877118. doi: 10.1073/pnas.2112877118.

(6.1) Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.
Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478.

(6.2)  RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell. 2018 Mar 1;69(5):802-815.e5. doi: 10.1016/j.molcel.2018.01.018.

(6.3) Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators.
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Cell. 2018 Jun 14;173(7):1650-1662.e14. doi: 10.1016/j.cell.2018.05.017. Epub 2018 Jun 7.

(6.4) Mechanisms of Transcriptional Pausing in Bacteria.
Kang JY, Mishanina TV, Landick R, Darst SA. J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13.

(7.1) Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase.
Opalka N, Chlenov M, Chacon P, Rice WJ, Wriggers W, Darst SA. Cell. 2003 Aug 8;114(3):335-45. doi: 10.1016/s0092-8674(03)00600-7.

(7.2) Structural basis for bacterial transcription-coupled DNA repair.
Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA. Cell. 2006 Feb 10;124(3):507-20. doi: 10.1016/j.cell.2005.11.045.

(7.3) See 6.3

(7.4)  6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.

(7.5) See 4.4

(7.6)  Structural basis for transcription complex disruption by the Mfd translocase.
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife. 2021 Jan 22;10:e62117. doi: 10.7554/eLife.62117.

(8.1)  Structure of a ternary transcription activation complex.
Jain D, Nickels BE, Sun L, Hochschild A, Darst SA. Mol Cell. 2004 Jan 16;13(1):45-53. doi: 10.1016/s1097-2765(03)00483-0.

(8.2) Crystal structure of bacteriophage lambda cII and its DNA complex.
Jain D, Kim Y, Maxwell KL, Beasley S, Zhang R, Gussin GN, Edwards AM, Darst SA. Mol Cell. 2005 Jul 22;19(2):259-69. doi: 10.1016/j.molcel.2005.06.006.

(8.3)
 Crystal structure of the bacteriophage T4 late-transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase.
Twist KA, Campbell EA, Deighan P, Nechaev S, Jain V, Geiduschek EP, Hochschild A, Darst SA. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19961-6. doi: 10.1073/pnas.1113328108. Epub 2011 Dec 1.

(8.4) 
Promoter-specific transcription inhibition in Staphylococcus aureus by a phage protein.
Osmundson J, Montero-Diez C, Westblade LF, Hochschild A, Darst SA. Cell. 2012 Nov 21;151(5):1005-16. doi: 10.1016/j.cell.2012.10.034.

(8.5) See 4.2

(8.6) See 6.1


(9.1) Structural mechanism for rifampicin inhibition of bacterial rna polymerase.
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Cell. 2001 Mar 23;104(6):901-12. doi: 10.1016/s0092-8674(01)00286-0.

(9.2) Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase.
Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. EMBO J. 2005 Feb 23;24(4):674-82. doi: 10.1038/sj.emboj.7600499. Epub 2005 Feb 3.

(9.3) CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition.
Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4178-87. doi: 10.1073/pnas.1502368112. Epub 2015 Jul 20.
  • Home
  • Research
  • Publications
    • The Darst Lab
    • The Campbell Lab
  • Members
    • The Darst Lab
    • The Campbell Lab
    • Lab Alumni
    • Lab pets
  • The Campbell Lab
    • Join Us
    • Handbook
  • The Darst Lab
  • Outreach